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Abstract—Exact Maximum Inner Product Search (MIPS) is an
important task that is widely pertinent to recommender systems
and high-dimensional similarity search. The brute-force approach
to solving exact MIPS is computationally expensive, thus spurring
recent development of novel indexes and pruning techniques for
this task. In this paper, we show that a hardware-efficient brute-
force approach, blocked matrix multiply (BMM), can outperform
the state-of-the-art MIPS solvers by over an order of magnitude,
for some—but not all—inputs.

In this paper we also present a novel MIPS solution, MAX-
IMUS, that takes advantage of hardware efficiency and pruning
of the search space. Like BMM, MAXIMUS is faster than other
solvers by up to an order of magnitude, but again only for
some inputs. Since no single solution offers the best runtime
performance for all inputs, we introduce a new data-dependent
optimizer, OPTIMUS, that selects online with minimal overhead
the best MIPS solver for a given input. Together, OPTIMUS and
MAXIMUS outperform state-of-the-art MIPS solvers by 3.2× on
average, and up to 10.9×, on widely studied MIPS datasets.

I. INTRODUCTION

Over the last decade, the Maximum Inner Product Search
(MIPS) problem has increasingly become more important in
machine learning and large-scale data systems. The classical
MIPS setup is as follows: given a vector u ∈ Rf and a second
set of vectors I , where each i ∈ I is also in Rf , find the
vector i that maximizes the inner product uT i. The problem
generalizes even further, to finding the top K vectors in I that
maximize u.

MIPS has attracted interest because it is relevant to many
real-world applications. For example, recommender systems—
which are deployed in e-commerce [22], social network-
ing [16], and media applications [19]—are often based on
latent factor modeling using matrix factorization (MF) [36],
[37]. In an MF model, each user is associated with a vector
u, and each item (e.g., a movie or song) is associated with
a vector i. The predicted rating for the item by the user is
modeled as uT i; therefore, solving MIPS in the context of an
MF model effectively computes the top-K recommendations
for a given user. Similarly, MIPS can be applied to high-
dimensional similarity search [26] and multi-class prediction
tasks [9], too.

For exact MIPS in the batch setting (i.e., compute top-K
for all users at once), the naı̈ve approach fails to scale to
today’s data volumes, and two indexing techniques recently
developed by the database community—LEMP [34] and FEX-
IPRO [21]—have proven to be the most efficient MIPS solvers
and currently lead in terms of performance. The efficiency
of these indexes is predicated on their ability to i) prune the
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Fig. 1. Example of a matrix factorization (MF) model, a common setting
where MIPS is applied to find the top-K items in I (i.e., movies) for each
user u ∈ U . In this paper, we focus on accelerating the end-to-end MIPS
runtime for all users in U .

search space of candidate items, thus limiting the number of
inner products computed, and ii) improve the efficiency of
computing the inner products themselves.

However, in this paper, we show that both of these indexes
do not always outperform a hardware-efficient brute-force ap-
proach: a dense matrix multiply of the user and item matrices
using optimized, cache-efficient Basic Linear Algebra Subpro-
gram (BLAS) libraries [6], [15], [38]. This approach, which
we refer to as blocked matrix multiply (BMM) throughout this
paper, has been applied to other areas of machine learning
(such as model search [32]) and is surprisingly competitive
with the state of the art. Prior indexing techniques for MIPS
have not taken into account hardware optimizations that could
be adopted by brute-force methods; in fact, they sometimes
actually lose to the brute-force ones.

To illustrate this point, we trained 20 MF models on
three gold-standard benchmark datasets and found that brute-
force computation can outperform indexing on many of them,
including several of the most accurate models. Figure 2 shows
two examples. For the recommendation model trained on the
Netflix Prize dataset (left), BMM outperforms the LEMP and
FEXIPRO indexes by a factor of 1.9–3.1×. However, for the
Yahoo R2 MF model (right), LEMP and FEXIPRO are 2-3.5×
faster than BMM.

Motivated by these experiments and others in Section V,
we propose a new, hardware-optimized index called MAX-
IMUS, which captures the hardware efficiency of BMM while
also pruning the search space, à la LEMP and FEXIPRO.
MAXIMUS utilizes a combination of clustering, blocking,
and linear algebra primitives from hardware-efficient software
packages [15], [29] to achieve high performance while still
being easy to implement. MAXIMUS first clusters users based
on their weight vectors using k-means, then uses the cluster
centroids to produce a sorted list of preferred items for each
cluster. The cluster’s sorted list approximates the user’s pre-
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Fig. 2. Experiment comparing LEMP [34] and FEXIPRO [21], two state-
of-the-art MIPS indexes, against a hardware-efficient brute-force approach,
blocked matrix multiply. We measure the end-to-end top-K runtime for all
users on two MF models from the Netflix Prize [4] and the Yahoo R2 [39]
datasets. For Netflix, blocked MM is surprisingly fastest; for Yahoo R2, LEMP
and FEXIPRO outperform it. In this paper, we develop OPTIMUS, an optimizer
that chooses online the best MIPS serving strategy for a target model.

ferred items for every user assigned to the cluster. Then, rather
than find each user’s top K items one at a time, MAXIMUS
blocks the traversal of the sorted item lists for multiple users at
a time, and applies a bound derived by Koenigstein et al. [18]
to correct for the approximation. By combining hardware-
efficient blocking with this pruning technique, MAXIMUS
outperforms LEMP and FEXIPRO by 1.78× on average, and
up to 10.6×.

Despite the improvements that MAXIMUS gives us, it still
does not beat BMM on all inputs. For exact MIPS, there is
no single clear winner; a data-dependent strategy is needed.
Therefore, we also propose OPTIMUS, a MIPS serving opti-
mizer that automatically selects an efficient solving strategy
for a particular input. To enable OPTIMUS to efficiently select
the best strategy, we exploit two key observations. First, for the
current MIPS indexes, index traversal is, in fact, much more
expensive than index construction. For example, we show that
the runtime to compute even the top K = 1 recommendation
for all users can be 90× greater than the runtime to build
an index. Thus, we can cheaply construct an index to test
its efficacy. Second, the performance of BMM and these
MIPS indexes can be determined by measuring the runtime
on a small number of users, then accurately extrapolating the
performance on the entire model. This inspires a sampling-
based approach, in which we construct a MIPS index and
then directly compare its performance to BMM’s on a small
sample of users. By applying an incremental t-test during this
comparison, we can, for certain inputs, determine the best
serving strategy without exploring the full sample, thereby
reducing the runtime overhead. Overall, this online tuning
step incurs low overhead (5.5% on average) while delivering
high accuracy and large speedups across four different index
types (up to 6×) that perform within 12% of an oracle-based
optimizer with no overhead. These speedups are especially
surprising given the highly-optimized nature of each index—
for example, in their recent paper, LEMP improved perfor-
mance over the previous best alternative exact index by up to
24× [34].

We show that combining OPTIMUS and MAXIMUS yields
a 3.2× speedup on average (and up to 10.9×) compared to
the state-of-the-art indexes alone. OPTIMUS and MAXIMUS

thus provide a pragmatic and easy-to-implement but difficult-
to-beat baseline for MIPS across a wide range of inputs and
query settings.

II. BACKGROUND

In this section, we provide background regarding the top-
K MIPS problem, the surprising competitiveness of blocked
matrix multiply (BMM), and the current state-of-the-art ap-
proaches to solving MIPS.

A. Problem Statement: Batch Exact MIPS

Let U be a set of user vectors u ∈ Rf , and let I be a set
of item vectors i ∈ Rf , where f is referred to as the number
of latent factors. For a single vector u, the Maximum Inner
Product Search problem is defined as

rui = arg max
i∈I

uT i

In this paper, we focus on the batch top-K MIPS prob-
lem [27], [31], [34], where we wish to minimize the end-to-end
runtime of finding the top K items that maximize the inner
product for all u ∈ U . However, MAXIMUS, our proposed
index, can also accelerate MIPS for a subset of users at a time,
as might happen in a model serving system like Clipper [7]
that collects tens of requests at once.

Why Exact MIPS? While a range of existing techniques
(Section VI) provide solutions to the approximate top-K
retrieval problem, in this work, we are interested in evaluating
MIPS quickly, subject to serving the most accurate results
available. For some domains, especially revenue-critical appli-
cations that demand high-accuracy recommendations (e.g., e-
commerce and advertising [30]), approximate techniques can-
not be applied and exact MIPS is instead required. (Notably,
the margin of accuracy separating the first- and second-place
teams in the 2009 Netflix Prize challenge was only 0.01% [3].)

B. Blocked Matrix Multiply

The brute-force approach to MIPS is straightforward: for
each user vector and each item vector, compute the inner
product between the two. Once the ratings for all user-item
pairs have been computed, select the top K items for each
user (e.g., using a min-heap).

Each inner product can be computed using sdot, a stan-
dard BLAS library function [15], [38]. However, instead of
repeatedly calling sdot in a double for-loop over the user and
item vectors, we can replace the entire computation with a
single matrix-matrix multiply between the users matrix and
the items matrix (e.g., using the sgemm function in BLAS),
thereby blocking the entire computation of user-item ratings.
We refer to this approach as blocked matrix multiply (BMM)
throughout this paper.

In theory, replacing inner products with a single matrix-
matrix multiplication does not change the runtime complexity
of computing all user-item ratings; both are brute-force. Thus,
if an index filters out a significant fraction of items, it should



be faster. Therefore, why is blocked matrix multiply often
faster than indexes in practice?

The reason for this result is that, due to their popularity
in numerical workloads, matrix-matrix multiply kernels are
highly optimized for modern hardware. Specifically, modern
linear algebra kernels will perform advanced data layout and
blocking to maximize cache utilization, and, when available
(e.g., on modern server-class processors), will aggressively
vectorize code using SIMD instructions. These optimizations
are applied automatically and transparently to the end pro-
grammer in BLAS libraries. By not designing for hardware
efficiency, state-of-the-art MIPS indexes do not fully take
advantage of these benefits found in modern hardware.

Thus, when we perform blocked matrix multiply using one
of many implementations of linear algebra kernels, we benefit
from decades of algorithmic and hardware-specific optimiza-
tions that yield substantial empirical speedups over naı̈ve inner
products (40×) or even matrix-vector multiply (20×). These
speedups act as an effective “constant factor” improvement in
runtime—they do not change the asymptotic performance, but,
especially when evaluating MIPS on reference inputs, these
constants have a significant effect on hardware efficiency.

C. Existing MIPS Indexes
MIPS is a topic of active research within the database

community. In this section, we give an overview of prior
approaches used to solve MIPS, which also provides necessary
context for the remainder of this paper.

User Clustering. One of the first novel solutions to the
MIPS problem was suggested by Koenigstein et al. [18],
who proposed to cluster users via spherical clustering to
perform approximate top-K queries. Effectively, they used the
cluster centroids to serve as an approximation of the users’
preferences. To measure the approximation error, they derived
a bound on the distortion of ratings based on the angle between
the user vector and its assigned centroid. Here, we re-derive the
bound (Equation 13 in [18]) as Equation 2 below and illustrate
how to use this bound to approximate top-K scoring. (Note:
This bound assumes that the user and item vectors reside in a
metric space, a safe assumption for exact MIPS.)

Suppose we have a user vector u, an item vector i, and
a centroid vector c that we have obtained from clustering the
user vectors (i.e., u is assigned to the cluster represented by c).
Let θui be the angle between u and i, θic be the angle between
i and c, and θuc be the angle between u and c. Finally, let
rui be the rating for the user-item pair u, i.

By the triangle inequality on angular distances in metric
spaces, we have that

|θic − θuc| ≤ θui ≤ θic + θuc.

Thus, we can compute an upper bound on rui:

rui = uT i = ‖u‖ ‖i‖ cos(θui) ≤ ‖u‖ ‖i‖ max
θ∈[θic±θuc]

cos θ.

For top-K, each user’s ratings are invariant under linear
scaling. Thus, we can omit ‖u‖ to preserve the relative

ordering of items for a single user and obtain a linear scaling
of rui, denoted r∗ui such that r∗ui ‖u‖ = rui:

r∗ui ≤ ‖i‖ max
θ∈[θic±θuc]

cos θ. (1)

Since cos−1(x) ∈ [0, π], we have two cases to consider. If
θuc < θic, then θuc < π and so Equation 1 is maximized at
θic − θuc. If θuc ≥ θic, then Equation 1 is maximized at the
origin. Rewriting Equation 1, we have:

r∗ui ≤
{
‖i‖ cos(θic − θuc) if θuc < θic

‖i‖ otherwise.
(2)

Equation 2 provides a means of monotonically ranking
items according to their angular distance from the cluster
center. Later on, in Section III, we extend this inequality to
perform exact queries using our proposed index, MAXIMUS.

LEMP. In SIGMOD 2015 [34] and TODS 2016 [33],
Teflioudi et al. introduced the LEMP index, which empirically
outperformed all prior approaches. LEMP solves the MIPS
problem using a divide-and-conquer approach: first, it sorts the
item vectors by length and partitions them into buckets, such
that each bucket contains vectors of roughly equal magnitude.
For each bucket, LEMP computes a set of candidate items for
the top K by solving a smaller cosine similarity search prob-
lem; depending on the distribution of vector lengths, LEMP
can choose one of several possible algorithms to retrieve
these candidates, such as length-based pruning, angular-based
pruning, incremental pruning (which leverages partial inner
products and the Cauchy-Schwarz inequality), or naı̈ve search
(i.e., inner products). Crucially, LEMP does not consider
blocked matrix multiply when scoring multiple users. LEMP
chooses the retrieval algorithm by testing each method on a
sample of user vectors. Once each bucket has been examined,
LEMP merges the results by computing the ratings for each of
the candidate item vectors using inner products and then finally
selects the top K items. In an extensive study appearing in
TODS 2016, LEMP was shown to outperform exact indexing
alternatives by up to 24×.

We include LEMP as well as FEXIPRO [21] in our study
as examples of state of the art in exact MIPS. Like LEMP,
FEXIPRO does not consider blocked matrix multiply when
scoring multiple users. To maximize the generality of our
results, we instantiate our proposed optimization framework
for both indexes (and MAXIMUS, which we propose), provide
a head-to-head comparison of these indexes using the authors’
implementations, and determine the benefits of adaptive opti-
mization for each in Section V.

III. A SIMPLE, HARDWARE-FRIENDLY INDEX

Our observation that BMM is competitive with state-of-the-
art MIPS indexes on some—but not all—inputs, provides us
with a number of lessons:

• The optimal choice of MIPS serving strategy is highly
variable and input-dependent.
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• Hardware efficiency is critical in achieving maximum
MIPS performance.

• We can leverage commodity hardware-optimized kernels
to improve serving efficiency with limited effort.

Based on these insights, we develop a new index that
relies heavily on commodity kernels for hardware-efficient
operation, while also pruning the search space of candidate
items. Our goal in developing this index is two-fold. First, we
seek to synthesize a new algorithm that could constructively
utilize the above lessons, combining them with existing ideas
from the indexing literature. Second, we seek to develop
a simple-to-understand and simple-to-implement but efficient
index that could serve as a baseline both for our own empirical
comparisons and for others to compare against in the future.
The resulting index, which we call MAXIMUS, relies heavily
on commodity analytics kernels and is implementable in just
a few lines of pseudocode, yet is competitive with (and often
exceeds the performance of) author-provided implementations
of LEMP and FEXIPRO.

The remainder of this section introduces MAXIMUS in
detail. We first begin with an overview of the MAXIMUS con-
struction and querying techniques. Subsequently, we discuss
the correctness of this index as well as practical implementa-
tion details and performance considerations.

1) Cluster Users: MAXIMUS clusters users into represen-
tative centroids that will approximate the users’ prefer-
ences.

2) Construct and Query Index: MAXIMUS computes a
conservative estimate of the maximum distortion be-
tween each cluster’s predicted rating and the predicted
ratings for users in the cluster. MAXIMUS subsequently
uses this conservative upper bound to create a sorted list
of items for each cluster.

3) Walk Index: To compute each user’s top-K items,
MAXIMUS walks the item list of the user’s correspond-
ing cluster, terminating when the previous bound implies
there are no higher-ranked items to explore.

Figure 3 illustrates these steps, which we proceed to de-
scribe in detail. We first describe MAXIMUS’s clustering strat-
egy (Section III-A). We then show how MAXIMUS uses the
cluster centroids to construct a prediction index (Section III-B)
and can subsequently prune item vectors during exact top-K
computation (Section III-C). We conclude with a discussion
of optimizations for performance and runtime analysis (Sec-

Algorithm 1: MAXIMUS Index Construction and Querying
input: # clusters n, users U , items I

initialization
L← empty associative array of per-cluster sorted items

function CBound(vector c, vector i, angle θb)
return ‖i‖ cos(θic − θb) if θb < θic else ‖i‖ . Eqn. 3

function ConstructIndex()
cluster U into clusters C = {C1, . . . , Cn} using k-means
for cluster Cj ∈ C having cluster centroid cj do

θbj ← maxu∈Cj
cos−1

(
uT cj

‖u‖‖cj‖

)
. max θuc for Cj

L[Cj ]← sort i ∈ I by CBound (cj , i, θbj ) descending

function QueryIndex(user u, top-K threshold K)
H: min-heap of maximum size K ← L[Cj ][1 : K]

s.t. u ∈ cluster Cj and each i ∈ H is weighted by uT i
for i ∈ L[Cj ][K + 1:] do

if CBound (cj , i, θbj ) < min(H) then
break

else if uT i > min(H) then
add i to H with weight uT i

return all items in H

tion III-D). Algorithm 1 provides the entire pseudocode for
the core MAXIMUS routines.

A. Clustering Users

MAXIMUS first partitions the set of users U ∈ Rf into
a set of C clusters, with C � |U |. We will use a user
u’s assigned cluster centroid c as a means of finding an
initial approximation of u’s top-K items, which we then can
iteratively refine per user to find the exact top K.

Choosing Clusters. As we previously illustrated in Equa-
tion 2, if we wish to provide an upper bound on the true
rating rui using a centroid c instead of u, then the quality
of our bound will be determined by the angle between c
and u: the smaller θuc is, the tighter the approximation will
be. The tighter the approximation, the more items we can
potentially prune when we query the index for a user’s top
K. Therefore, we need to choose a clustering algorithm that
ultimately minimizes θuc.

As prior work has shown [18], the ideal clustering algorithm
to minimize θuc is spherical clustering, which projects the
centroids onto the unit sphere per iteration and minimizes
cosine dissimilarity rather than Euclidean distance. However,
we found in our experiments that standard k-means reasonably
approximates the target goal of minimizing angular distance,
while also being computationally faster than spherical cluster-
ing. Because k-means is a common primitive, there are a num-
ber of widely available, hardware-efficient implementations.
In our experiments, we found that, on average, the set of θucs
generated by k-means were only 7% greater than the same set
generated by spherical clustering, while k-means was 2-3×
faster, leading to end-to-end runtime improvements of 5-10%.
Therefore, we use k-means for user clustering in MAXIMUS,
and report only results using k-means in Section V.

B. Constructing an Index

As described in Section II-C, Koenigstein et al. introduced
the idea of clustering user vectors to evaluate approximate top-
K queries, and showed how to bound the approximation error



based on the angle between the centroid and user vector (Equa-
tion 2). In this section, we extend this inequality to compute
exact top-K queries, which forms the basis of MAXIMUS. In
particular, we show how to use this approximation to prune
items that cannot belong in u’s top-K.

Instead of computing the upper bound for each user-item
pair, we instead compute it for the largest such θuc contained
in a given cluster, which we denote θb. Subsequently, we have:

r∗ci ≤
{
‖i‖ cos(θic − θb) if θb < θic

‖i‖ otherwise.
(3)

With this coarser approximation, MAXIMUS first computes
r∗ci for each centroid c and item i and, for each centroid c,
produces a list of items sorted by r∗ci, denoted Lc. Both user
clustering and this construction procedure are represented by
the ConstructIndex procedure in Algorithm 1.

C. Performing Queries Using Centroid Index

Given the sorted centroid lists, we can now perform top-K
queries for each user. First, we populate the min-heap H with
the first K items from the user’s centroid list Lc; the items
in H are weighted by their respective true ratings, rui. Then,
we examine the remaining items in Lc by iteratively applying
the upper bound in Equation 3. Each item’s upper bound is
then compared to the smallest rui in H . If the upper bound
is less than the smallest rui, then that item and all subsequent
items in Lc cannot have an rui greater than those already in
H , since Lc is sorted in descending order by the upper bound,
which is always greater than or equal to rui. Therefore, we
can skip those remaining items and return the items in H as
our top K. This procedure is represented by the QueryIndex
procedure in Algorithm 1.

D. Hardware-Efficient Execution

As described at the start of this section, we designed
MAXIMUS to leverage hardware-efficient libraries for linear
algebra and advanced analytics. MAXIMUS uses k-means for
clustering, of which there are many efficient implementations.
After computing the upper bound in Equation 3, MAXIMUS
uses efficient sorting routines, then walks the index during
queries. This raises a natural question: is it possible to
hardware-accelerate MAXIMUS’s last step of index traversal?

Because each MAXIMUS cluster is shared across multiple
users, we can block the first several steps of each walk.
Specifically, for the first B items in a cluster list, we perform a
blocked matrix multiply between all user vectors in the cluster
and the first B item vectors in the cluster item list. This work
sharing allows MAXIMUS’s index traversal routine to make
use of more matrix-matrix multiply operations (instead of less
efficient matrix-vector or inner product operations) while still
benefiting from MAXIMUS’s early termination routines. If a
user only needs to visit fewer than B items, this will result in
wasted work. However, on balance, for modest blocking sizes,
we find that sharing the first B items is beneficial to end-to-
end runtime. We evaluate the impact of this optimization via
a lesion study in Section V.

Combining Pruning and Hardware Efficiency. In Sec-
tion V, we benchmark MAXIMUS on large U , I , and f , and
yet we still find blocked matrix multiply to be competitive.
Nevertheless, a natural concern with BMM is that, as model
sizes grow, constant-factor runtime improvements due to hard-
ware effects will diminish compared to an index, rendering
matrix multiply much slower. That is, while an index can
potentially prune irrelevant items if they are added to a dataset,
BMM will compute them all. By combining the ability to
algorithmically prune items and reap the benefit of hardware-
efficient computation, MAXIMUS mitigates this concern; its
index construction routine will place potentially highly-ranked
items at the start of each cluster list, so the work of many users
who are likely to prefer them can be accelerated via matrix-
matrix multiply, without needing to visit all items.

Index Memory Requirement and Serving Runtime. For a
U and I with f latent factors, the MAXIMUS index requires
O(|C||I|f) storage, with one sorted list of length |I| per
cluster. Given a k-means running time of O(f |C||U |i) for i
iterations and w̄, the average number of items visited per user
in Algorithm 1, MAXIMUS runs in time:

O(f(|C||U |i+ |C||I| log |I|+ |U |w̄ logK)), (4)

where |C||I| log |I| captures the index construction time
(including sorting) and |U |w̄ logK captures the time to walk
each list. MAXIMUS is faster than brute force when Equation 4
is less than O(f(|U ||I|+|U ||I| logK)); therefore, minimizing
w̄ is instrumental to MAXIMUS performance.

MAXIMUS Parameters. MAXIMUS’s index exposes three
parameters: the item blocking factor (B), the number of
clusters (|C|), and the number of iterations to run k-means
(i). All three of these parameters can be tuned to maximize
performance; however, we found that MAXIMUS’s runtime is
robust across various settings of B, C, and i. After conducting
a parameter sweep, we found that B = 4096, |C| = 8, and
i = 3 is effective for many inputs. (Surprisingly, only a few
iterations of k-means are needed to produce an adequate set of
clusters.) In our evaluation, we report results with these three
settings for all of our experiments.

E. Practical Usage

Because MAXIMUS clusters users rather than items, it as-
sumes a relatively static set of users in the desired application.
For applications with a dynamic set of users (assuming an
initial static set is present), we can adapt MAXIMUS as follows:
after generating our user clusters on the initial set of users,
we forgo the clustering step for new users and simply assign
them to the extant centroid that yields the smallest L2 distance
(i.e., perform only the assignment step in k-means). In our
experiments, we found this strategy to be empirically effective
for the collaborative filtering datasets used in our evaluation
benchmarks: running k-means on a smaller sample of users
(10%) and then assigning the remaining users to the resulting
centroids did not impact the end-to-end runtime by more
than 1%. In real applications, the churn in new users may
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reach a critical mass, and users can be removed as well as
added. Therefore, periodically scheduling new rounds of user
clustering to update the centroids is an interesting research
question, which we leave as future work.

IV. OPTIMUS: A MIPS OPTIMIZER

Although MAXIMUS is, on average, an improvement on the
state of the art for MIPS indexes, it still does not always
outperform BMM for all inputs. We cannot rely solely on
existing MIPS indexes for the fastest top-K serving strategy.
Further, we cannot use rule-based principles strictly based on
the weight vector characteristics of U and I to decide which
serving technique is best; computing a measure of U and I’s
“index-ability” is unlikely to be faster than computing the
top K itself. Instead, multiple methods—including BMM—
are necessary to serve a wide variety of inputs as efficiently
as possible, and deciding between these techniques based
on empirical cost measurements is critical. In response, we
propose OPTIMUS, a new optimizer that automates the process
of selecting a fast serving strategy.

Given weight vectors U and I as input, OPTIMUS’s goal is
to select the fastest serving strategy, choosing between either
an exact indexing strategy or BMM. OPTIMUS is designed to
operate in the online setting, where we have no a priori knowl-
edge of the input model or underlying hardware except cache
sizing. Therefore, OPTIMUS must run quickly—otherwise, the
cost of making an optimization decision might dominate the
cost of computing the top K using a single technique.

A. Online, Sample-Based Optimization

When operating online, the key idea in OPTIMUS is to
estimate the overall performance of each serving technique
based on a small sample of the users in U . Two factors make
this strategy possible, and allow OPTIMUS to achieve high
accuracy at low (often less than 5%) runtime overhead.

First, while top-K queries can be slow, requiring up to 14
hours to evaluate for all of the users in U in our measurements,
the actual index construction time is relatively short for current
indexing schemes, as is illustrated in Figure 4. In Section V,
we show that the preprocessing and index construction over-
head for FEXIPRO is on average 1.9%, for LEMP is on
average 0.5%, and for MAXIMUS (Section III) is 1.5% in a
batch scoring task that builds an index and then computes the
top K = 1 prediction for every user. This ratio is even lower
for larger K. Thus, when evaluating whether to use one of

these indexing methods, we can quickly construct a full index
on U and/or I , and then evaluate its quality using a sample
of the users (as we detail later). Note that, because index
construction is inexpensive for the fastest indexing techniques
in the literature, we currently always construct a full index.

Second, to evaluate the top-K performance of blocked
matrix multiply, OPTIMUS extrapolates its performance on a
small subset of users. Optimized matrix multiplication libraries
like Intel MKL generally implement an O(mnk) algorithm
(for multiplying m × n and n × k matrices) that scales
predictably once matrices are larger than the machine’s L2
cache size, since they divide and process the matrices in
blocks. Thus, OPTIMUS runs matrix-matrix multiplication for
a subset of users and items that at least fully occupies the L2
cache and extrapolates performance from there. As we show in
Section V, this approach accurately captures the performance
of BMM. In addition, we also use the sample to extrapolate
the runtime of extracting the actual top-K values (e.g., using
a min-heap) once the ratings matrix has been computed.

Sample-based runtime estimation is a classic technique in
data management systems, with previous applications span-
ning cardinality estimation [23], online query progress estima-
tion [24], MapReduce [25], and cloud [11] databases. Perhaps
closest to our proposal is [34], which uses an online optimizer
to select between retrieval algorithms for each bucket of
items. In OPTIMUS, we use a sampling-based optimizer to
select between using an index at all and BMM—both logical
operators for the same task of top-K search. Additionally,
unlike [34], we empirically evaluate the runtime overhead,
accuracy in obtaining these estimates, and effect on end-to-
end MIPS serving performance in Section V.

In more detail, OPTIMUS performs online runtime estima-
tion of indexing and BMM as follows: First, the optimizer
constructs an index on U and/or I (or multiple indexes, if nec-
essary). Second, OPTIMUS performs queries with a randomly
chosen subset of user vectors and records the runtime. Third,
the optimizer computes the rating predictions via blocked
matrix multiply for a subset of user vectors and computes their
top K. OPTIMUS subsequently estimates the total runtime for
each method. Finally, if OPTIMUS was invoked in a batch
prediction setting, it completes the top-K computation for
the remaining users using the faster approach and reuses the
results that it already had for the sampled users.

To implement the above steps, OPTIMUS must also decide
on a sample size. For our target workloads, the number
of users is large—at least 480,000. As a result, we can
obtain high-quality estimates with only a small fraction of
users—typically, 0.5%. However, especially for BMM and
for hardware-optimized indexes such as LEMP, the sample
size must be sufficiently large to demonstrate the benefits of
hardware optimizations. For example, if we perform matrix-
matrix multiply with only one user, we effectively perform
matrix-vector multiply, which is substantially slower. Thus, the
optimizer must ensure that the chosen sample is sufficiently
large to illustrate hardware effects; in our optimizer imple-
mentation, we require that the sample size at least occupy



the entire L2 cache (256 KB in our experiments). For most
U , this is easily occupied by a 0.5% sample—with 64-bit
double-precision weights, 2048 u vectors with 100 latent
factors requires 1.64MB of memory, easily occupying this
requirement. Section V provides empirical measurements of
the effect of sampling on runtime and accuracy.

Offline Performance Profiling for BMM. For blocked
matrix multiply, we can alternatively develop an analytical cost
model to predict offline (i.e., without sampling) the expected
runtime performance of just computing the user-item ratings—
but not the selection of the top K items. Because dense
matrix multiply is compute-bound, we can model the runtime
based on the total number of floating-point operations (FLOPs)
needed and the FLOPs per cycle of the CPU [14].

In our experiments, we found that this analytical model was
accurate within 5% of the measured dense matrix multiply run-
times in our evaluation. However, this model does not extend
to the top-K selection stage of the MIPS problem: because
the traversal through the min-heap depends on the distribution
of ratings for each user, this data-dependent component of
the computation is difficult to analytically model. While the
dense matrix-matrix multiply operation does take the bulk of
the computation runtime, the min-heap traversal time is non-
negligible—at least 9.5% for our largest models. Therefore,
we report results for OPTIMUS only using the online sampling
approach in our evaluation.

Optimization: Early Stopping with t-test. Rather than
measure the performance of both the index and blocked matrix
multiple on the entire sample of users, we can, in some cases,
stop early, by applying a one-sample t-test [12] on the per-
user query times. That is, after measuring the performance of
blocked matrix multiply, we can incrementally apply a one-
sample t-test on the per-user times seen so far and compare
it against the mean query time provided by BMM. If the
calculated p-value of the test is less than a pre-determined
threshold (e.g., 5%), then the optimizer can reject the null
hypothesis and select either BMM or the index, whichever
has the lower mean query time.

This technique, of course, will not work for indexes that
also batch user queries for better performance; in those cases,
the full sample has to be used to realize the full effects of the
L2 cache. Therefore, OPTIMUS cannot employ this technique
for indexes such as MAXIMUS. However, for indexes that do
not batch users, the t-test is empirically effective for early
stopping. For example, we found in our experiments that
OPTIMUS needed to only examine 4% of the full sample of
users when deciding between FEXIPRO and blocked matrix
multiply for K = 1 on Netflix, f = 10.

B. Overhead of Optimizer

We can statically bound the overhead of OPTIMUS’s opti-
mization routine. Denote the index construction time as CI ,
the per-user index-based query time as QI , and the per-user
BMM query time as MI . Provided that we can estimate QI
and MI accurately for a sample fraction of users of size s (of

n total users), then the total runtime overhead of the optimizer
is given by CI + max(QI ,MI)

s
n .

Given that the cost of index construction is on average 1.5%,
we can consider a few examples. If we use a 1% sample
of users to evaluate our trade-off, and if QI = MI , then
the overhead due to optimization is approximately 1%. If QI
and MI differ by a factor of 3, the overhead of optimization
compared to an oracle that automatically selects the right
model is approximately 3%. However, compared to simply
choosing the slower of the two methods, the total speedup is
300
103 = 2.93×. More generally, given a d-times performance
differential, the overhead will be CI + ds

n . Given that the
empirical performance differences we observe are regularly 2-
3×, this overhead is relatively small compared to the benefit.

The above analysis is predicated on the ability to inexpen-
sively and accurately estimate QI and MI . In Section V, we
demonstrate that sampling less than 1% of users results in high
accuracy with an average of 6.3% overhead across four types
of indexes.

V. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the index per-
formance of MAXIMUS, the runtime efficiency of blocked
matrix multiply, and the optimizer efficacy of OPTIMUS across
various datasets and indexing methods found in the literature.
Our results show that, across our reference datasets, OPTIMUS
delivers, on average, a 2.8× runtime improvement for LEMP,
1.8× for MAXIMUS, a 5.2× for FEXIPRO-SI, and 6× im-
provement for FEXIPRO-SIR, within 8.8%, 11.2%, 11.1%,
and 8.1% of an oracle optimizer, respectively. In addition,
MAXIMUS is, on average, 1.78× faster than LEMP and
4.1× faster than FEXIPRO; when combined with OPTIMUS,
MAXIMUS is 3.2× faster than LEMP.

A. Experimental Setup

Datasets. We use four reference benchmark datasets for our
experimental evaluation (Table I), including three collaborative
filtering datasets. Of these, the Netflix dataset is by far the
smallest (480K users and 17K items)—but arguably the best-
studied in the literature for collaborative filtering. The Yahoo
R2 dataset is the largest (1.8M users), and has not been
benchmarked in prior work on MIPS serving; we select it to
benchmark OPTIMUS’s scalability. The fourth dataset, GloVe-
Twitter, contains high-dimensional (up to f = 200) word
embeddings generated from a corpus of Tweets, and has been
previously used to benchmark approximate nearest-neighbor
and MIPS algorithms. Per [33], we use the same permutation
to select user vectors from the dataset, and use the remaining
vectors as item vectors.

Models. We evaluate top-K performance over a range of
collaborative filtering models trained on these datasets, varying
the number of latent factors and tuning the regularization for
optimal accuracy.



TABLE I
DATASETS FOR EVALUATION

Dataset # users # items # ratings
Netflix Prize [4] (Netflix) 480,189 17,770 100,480,507

Yahoo Music KDD [10] (KDD) 1,000,990 624,961 252,810,175
Yahoo Music R2 [39] (R2) 1,823,179 136,736 699,640,226

GloVe-Twitter [26] 100,000 1,093,514 –

To begin, the authors of LEMP [34] have made the models
used in their evaluation publicly available;1 for the Netflix
dataset, these models were trained using Distributed Stochastic
Gradient Descent, as described in [35], and we denote these
models by *-DSGD throughout this section. For the Yahoo
Music KDD dataset, the LEMP authors evaluated against the
model found in [17], which is also considered one of the
canonical reference models for this dataset. We denote this
model by KDD-REF.

In addition to these models, we also train explicit feedback
models (which incorporate the ratings made available in each
dataset) using the NOMAD toolkit [40] (denoted *-NOMAD).
We use the regularization parameter and hyperparameter set-
tings reported in [40] as the starting point for a grid search
for the optimal test RMSE. For the Netflix dataset, we also
train an additional set of implicit feedback models [13], using
Bayesian Personalized Ranking [28] as our training algorithm
(denoted *-BPR). For the Yahoo R2 Music dataset,the litera-
ture did not contain any previously reported hyperparameter
settings; therefore, we performed an expanded grid search of
λ = {0, 1e−7, 1e−6, . . . , 1}. For all models (i.e., dataset and
number of latent factors), we utilize the most accurate models
with the lowest test RMSE.

Indexing Strategies. We compare three indexing strate-
gies: LEMP, FEXIPRO, and MAXIMUS. Recent work from
2016 [34] shows that LEMP outperforms all prior solutions
to the exact MIPS problem , providing a gold standard for
indexes prior to its publication. In a more recent study, FEX-
IPRO outperforms LEMP, so we include these two indexing
strategies as representative of the state of the art.

As described below, for LEMP and FEXIPRO, we utilize
implementations provided by the authors of these studies.
Our primarily goal is not to directly compare the engineering
quality of these indexes, but instead to understand i) their
performance compared to hardware-optimized blocked matrix
multiply, and ii) their amenability to online optimization via
our proposed methods. Each index is implemented in C++
with double-precision floating-point arithmetic.

LEMP. We utilize the publicly available source code for
LEMP provided by the authors.2 We compile LEMP with
SIMD optimizations enabled and tune LEMP’s parameters as
instructed in the README. For the retrieval algorithm, we
benchmark against LEMP-LI (for length-based and incremen-
tal pruning), which consistently achieves the best runtimes for
top-K computation in [34].

1http://dws.informatik.uni-mannheim.de/en/resources/software/lemp
2https://github.com/uma-pi1/LEMP

FEXIPRO. We utilize the publicly available source code for
FEXIPRO provided by the authors.3 As with LEMP, we com-
pile FEXIPRO with SIMD optimizations enabled. In addition,
we contacted the authors of FEXIPRO with the experimental
results from this study to obtain guidance regarding parameter
tuning. We tuned parameters per their guidance and report
results from both FEXIPRO with all pruning strategies enabled
(denoted FEXIPRO-SIR) and FEXIPRO with only SVD and
integer pruning enabled (denoted FEXIPRO-SI).

MAXIMUS Implementation. We implement MAXIMUS in
C++4 using double precision. We use the open-source Ar-
madillo library [29] for k-means and Intel MKL [15] for
MAXIMUS’s shared index traversal. We also compared with
OpenBlas [38] and found limited effect on runtime for the
relatively small shared index traversal operation.

BMM Implementation. We also compare to brute-force
blocked matrix multiply using Intel MKL [15]. We compute
ratings for users in a series of batches that each occupy the
entirety of memory, and use a min-heap from the C++ standard
library to compute the true top K.

Optimizer Implementation. We implement OPTIMUS from
Section IV as a subroutine within each of the three indexes’
main routines. OPTIMUS performs sampling and runtime esti-
mation, and then invokes either MKL or the regular indexing
routine based on the output.

Environment. We report results from an Intel Xeon E7-4850
v3 2.20 GHz processor with 1 TB of RAM. We allow Intel
MKL to use the entire RAM in blocking. Unless otherwise
noted, we evaluate our benchmarks on a single core and report
results in the single-threaded setting.

B. End-to-End Index Performance

In this section, we examine the end-to-end runtime—which
includes index construction time—of MAXIMUS compared to
LEMP, FEXIPRO, and BMM to compute the top K for all
users. Figure 5 depicts the results across all four datasets
and all 23 reference models; we report the runtimes for
K = {1, 5, 10, 50}. Without using OPTIMUS, MAXIMUS
is, on average, 1.8× (and up to 10.6×) faster than LEMP
and > 10× faster than both FEXIPRO-SI and FEXIPRO-
SIR. Head to head, MAXIMUS is faster than LEMP 67% of
the 92 model/top-K combinations. Compared to FEXIPRO-
SI, MAXIMUS is faster for every single combination in our
benchmarks except for one: KDD-NOMAD, f = 50, K = 5.

These results stand in contrast to [21], which reports signif-
icant speedups over LEMP. We have presented and discussed
these results with the authors of both LEMP and FEXIPRO
and, after conferring with them, believe these differences are
due to several factors. First, unlike LEMP and MAXIMUS,
FEXIPRO is optimized for the point query setting, in which a
single user’s top K is queried at a time. Thus, FEXIPRO does
not take advantage of hardware blocking, which could yield

3https://github.com/Hui-Li/MFRetrieval
4https://github.com/stanford-futuredata/optimus-maximus

http://dws.informatik.uni-mannheim.de/en/resources/software/lemp
https://github.com/uma-pi1/LEMP
https://github.com/Hui-Li/MFRetrieval
https://github.com/stanford-futuredata/optimus-maximus
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Fig. 5. MIPS wall-clock time of MAXIMUS and BMM compared to LEMP and FEXIPRO (lower is better). When combined with OPTIMUS, MAXIMUS is
3.2× faster than LEMP, 7.3× faster than FEXIPRO-SIR, and 6.3× faster than FEXIPRO-SI.

additional performance benefits. In addition, [21] reports run-
time relative to a custom implementation of LEMP, as opposed
to the LEMP authors’ implementation that we benchmark here.
Finally, because the results presented here utilize models that
have been regularized to obtain the lowest test RMSE, with
the exception of the *-DSGD models, these models are not the
same as those appearing in prior publications.

Compared to blocked matrix multiply, MAXIMUS is 2.7×
faster on average, but this speedup is not present for all
models and values of K; blocked matrix multiply is actually
faster in 34.8% of the 92 model/top-K combinations in
our benchmarks. (Note that the runtime for blocked matrix
multiply varies with K, due to the time necessary to traverse
the min-heap for all users.) The difference in runtime can also
vary widely between the two: MAXIMUS can be up to 43.4×
faster than BMM for our reference models, but BMM can also
be up to 18.7× faster than MAXIMUS. This underscores the
need for an optimizer that can choose between blocked matrix
multiply and MAXIMUS (or other indexes) to achieve the best
performance for MIPS.

Finally, note that, between MAXIMUS, BMM, and LEMP,
no pair of techniques yielded the fastest runtime on all the
reference models. LEMP is fastest on 11 of the 92 combina-
tions, blocked matrix multiply is fastest on 53 of them, and
MAXIMUS is fastest on the remaining 28. This indicates that a
three-way optimizer that decides between LEMP, MAXIMUS,

and BMM is ideal. We investigate this question in Section V-C.

Multi-core Experiments. In addition to these single-threaded
benchmarks, we also ran multi-core experiments to determine
whether or not MAXIMUS and prior MIPS indexes would scale
with increased parallelism. While blocked matrix multiply is
trivial to parallelize, parallelizing the index structures of each
respective system may not be as straightforward. The results
are summarized in Figure 6: both MAXIMUS and LEMP
achieved a near-linear speedup as we increase the number
of cores from 1 to 16. Because both indexes are read-only,
a simple partitioning scheme across users proves to be an
effective parallelization strategy.

Fig. 6. End-to-end runtime of K = 1 query benchmarked on blocked matrix
multiply, MAXIMUS, and LEMP across multiple cores. (FEXIPRO did not
provide a multi-core implementation.) Both MAXIMUS and LEMP achieve
near-linear speedups as we increase the number of cores.



TABLE II
EFFECTIVENESS OF ONLINE OPTIMIZER ON REFERENCE MODELS

Avg. speedup versus LEMP-only Baseline
Optimizer Choices Accuracy Avg. Overhead Std. Dev. Overhead Index Only OPTIMUS (w/ overhead) Oracle (no overhead)

BMM + LEMP 89.1% 4.3% 4.2% 1× 2.81× 3.08×
BMM + FEXIPRO-SI 97.8% 6.4% 8.1% 0.50× 2.60× 2.93×
BMM + FEXIPRO-SIR 97.8% 6.4% 7.8% 0.43× 2.56× 2.88×
BMM + MAXIMUS 93.5% 5.5% 5.9% 1.78× 3.15× 3.43×
BMM + LEMP + MAXIMUS 84.8% 9.1% 8.4% - 2.99× 3.48×

C. OPTIMUS Efficacy and Overhead

To demonstrate the effectiveness and generality of OPTI-
MUS, we combine it with each of the three index techniques—
MAXIMUS, LEMP, and FEXIPRO-SI/SIR—to choose between
the given index and BMM on the 92 model/top-K combina-
tions benchmarked in Figure 5. We also include an additional
experiment in which we pair OPTIMUS with both MAXIMUS
and LEMP, thus using OPTIMUS to perform a three-way
optimization.

To effectively compare OPTIMUS’s runtime for a target
model and K, we consider two baselines: first, we normal-
ize our results by the runtime of the LEMP index only.
Second, we consider the runtime resulting from consulting
an oracle optimizer that always chooses the fastest strategy
without incurring any runtime overhead. Table II summarizes
the results of these experiments: for each two-way indexing
strategy, OPTIMUS improves the top-K runtime and is within
8.3% of the optimal runtime efficiency compared to the oracle
(average: 5.1%, including overhead). To observe the benefits of
OPTIMUS, consider FEXIPRO-SIR, the slowest index that we
measure in our benchmarks. Without OPTIMUS, FEXIPRO-
SIR is, on average, 2.3× slower than LEMP on our reference
models; however, with OPTIMUS, it becomes 2.6× faster
than LEMP, within 11% of the maximum improvement that
an oracle would provide. The other indexes exhibit similar
trends, including MAXIMUS, which becomes 3.2× faster than
LEMP—within 9% of the max—when paired with blocked
matrix multiply using OPTIMUS.

The Accuracy measurement in Table II refers to OPTIMUS’s
classification accuracy: how often does it choose the fastest
serving strategy? For FEXIPRO and MAXIMUS, OPTIMUS
effectively makes the correct choice with greater than 93%
accuracy: in the case of MAXIMUS, only six model/top-K
combinations are misclassified, while only two are misclas-
sified for FEXIPRO-SI/SIR. These misclassifications do not
lead to a significant runtime penalty: for the six misclassified
examples for MAXIMUS, the runtimes of MAXIMUS and
blocked matrix multiply are within a few seconds.

However, the accuracy for LEMP is less impressive: 10 of
the 92 combinations are misclassified. To understand why this
was the case, we ran an experiment in which we varied the user
sample ratio used in OPTIMUS and measured the estimated
runtime of the serving strategy (either blocked matrix multiply
or an index) based on that sample. We measured the variance
of the overall estimates for all of the indexes and BMM.

Figure 7 summarizes the results of our experiment on KDD-
REF, f = 51, K = 1 for five distinct sample ratios ranging
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Fig. 7. OPTIMUS runtime estimates for all indexes on KDD-REF, f = 51,
K = 1. Solid lines represent the true runtimes; dashed lines denote the
estimates. Estimates are averaged over four runs; error bars represent the
standard deviation. Despite the high variance of the estimates for LEMP,
OPTIMUS makes the correct choice with a small (< 1%) sample of users.

logarithmically from 0.01% to 1%. As depicted, OPTIMUS’s
user sampling technique is robust and exhibits relatively low
variance for MAXIMUS, BMM, and FEXIPRO, but the esti-
mated runtimes for LEMP have much higher variance. This
is because LEMP performs runtime adaptation of its serving
strategy, and two separate samples of users may result in
different pruning strategies (i.e., coordinate-wise versus L2-
wise pruning; see Section II-C). For this particular model
and choice of K, OPTIMUS is still able to make the right
decision, since the estimated runtime for LEMP never exceeds
the runtime estimate (or the true runtime) for BMM. However,
for other models, this is not always the case, which explains
why OPTIMUS’s accuracy with LEMP is lower. Nevertheless,
combining OPTIMUS with LEMP is still beneficial, yielding
a 2.8× speedup that is within 9% of the speedup obtained by
the oracle.

The high variance exhibited by LEMP in our experi-
ments also demonstrates why the three-way optimizer in the
bottom row of the table—BMM + LEMP + MAXIMUS—
actually achieves a smaller overall speedup (3×) than BMM
+ MAXIMUS (3.2×). In addition to the slight reduction in
accuracy (84.8%), OPTIMUS begins to incur a higher runtime
overhead—9.1% on average—since it now has to construct and
query multiple indexes. For this three-way comparison OPTI-
MUS’s speedup is within 15% of the max possible speedup,
3.48×.

We were initially surprised to find that absolute optimizer
accuracy was not a robust signal of end-to-end speedup.
The three-way optimizer demonstrates this well: with 84.8%
accuracy, OPTIMUS is still within 15% of the optimal speedup
on average. The primary reason for this phenomenon is that,
in the cases where OPTIMUS chooses a sub-optimal strategy,
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the margin of difference is often small. For example, in
R2-NOMAD f = 50, K = 1 (Figure 5), MAXIMUS and
LEMP are remarkably close—within 12%—while each index
is considerably faster than BMM—a factor of 3.75×. Thus,
unless OPTIMUS’s runtime estimate is off by more than 3.75×,
choosing the slower index has limited impact on this model.
This result suggests that even coarse-grained runtime estimates
are useful in accelerating these indexing workloads.

Runtime Analysis of MAXIMUS and Item Blocking Lesion
Study. Finally, to better understand the impact of each stage
of MAXIMUS’s execution, we measured the running time of
each component. On average, MAXIMUS incurs an overhead of
1.8% for clustering, constructing its index, and performing cost
estimation. We illustrate a breakdown for Netflix-NOMAD,
f = 50 and R2-NOMAD, f = 50 in Figure 8, both of which
use MAXIMUS’s index; for Netflix, MAXIMUS spends 0.79
seconds in the first three stages, and over 43 seconds in the
final stage when computing predictions. We also illustrate the
effect of hardware-efficient item blocking, which delivers 2.4×
and 1.4× speedups for these datasets; the effect for Netflix is
more pronounced because the average number of items visited
in the index for each user (i.e., w̄) is larger than in Yahoo R2.
Sharing a single, small blocked matrix multiply at the start of
index traversal allows MAXIMUS to benefit from hardware-
efficient BLAS. Overall, MAXIMUS’s overheads are small,
especially relative to the speedups that OPTIMUS enables by
choosing between MAXIMUS and blocked matrix multiply.

VI. RELATED WORK

State of the Art: LEMP and FEXIPRO. LEMP [34]
(previously described in Section II-C) and FEXIPRO [21] are
the closest related work in exact MIPS, which we build upon
and evaluate against in this work. Here, we first summarize the
key contributions of FEXIPRO, then discuss key differences
between these two indexes and our work.

FEXIPRO [21] leverages three pruning strategies for the
top-K MIPS problem: i) applying singular value decomposi-
tion to the input to only compute partial inner products, ii)
applying input quantization to perform integer-based opera-
tions only, and iii) applying a non-negative transformation on
the input to ensure monotonicity, further promoting pruning.
In their paper, the FEXIPRO authors report that these three
strategies combined together achieve an order-of-magnitude

speedup over a custom point-query implementation of LEMP.
As discussed in Section V-B, our results differ on the models
we evaluated.

There are several differences between the prior work on
MIPS serving and ours. First, both LEMP and FEXIPRO
do not consider bypassing the index search altogether to
use blocked matrix multiply, which we show is often better
than their performance. Neither LEMP nor FEXIPRO con-
siders BMM as a strategy when scoring a group of users,
and their data structures are not designed to enable BMM
during index traversal. While LEMP samples users to select
the best retrieval algorithm per bucket, OPTIMUS’s sampling
strategy answers a much coarser granularity question: should
a given model be indexed at all? To minimize the overhead of
sampling, we apply an incremental t-test for early stopping,
another difference between our approach and LEMP’s. Lastly,
both LEMP and FEXIPRO build an index on the items, rather
than on the users.

User Clustering and Other Indexes. Several alternative
methods propose tree-based indexes for MIPS. As discussed
in Section II-C, Koenigstein et al. [18] introduce a method
for computing approximate top-K recommendations via user
clustering. In their method, the user vectors are clustered using
spherical clustering and the top K items are pre-computed
for each cluster—the top-K for a given user is the top-K of
the cluster the user belongs to. In their analysis, they provide
the bound we use in Equation 2 in Section III, but they
use it for the purpose of approximate—not exact—top-K. In
MAXIMUS, we show how to utilize this bound to build an
efficient index for exact MIPS.

Ram and Gray [27] present three different techniques for
indexing item vectors: single-ball trees, dual-ball trees, and
cone trees. All three data structures share a similar strategy:
they recursively subdivide the metric space of items into
hyperspheres. Every node in the tree represents a set of points,
and each node is indexed with a center and a ball enclosing
all the points in the node. Of the three, the cone tree offers the
fastest speedups. Follow-on work by Curtin et al. [8] extends
this method using cover trees [5], but Teflioudi et al. [34] show
that these methods are slower than LEMP.

Approximate MIPS. A large body of work considers the
approximate setting for MIPS, whereby search procedures
attain approximations of the true top K. Shrivastava et al. [31]
use asymmetric hash functions in their LSH subroutine, which
reduce the approximate MIPS problem to a sublinear nearest-
neighbor search. Similarly, Bachrach et al. [1] also reduce
MIPS to NNS using a novel Euclidean transformation, which
allows users to trade off top-K accuracy for better perfor-
mance. Our focus in this work is the exact setting—delivering
the most accurate predictions possible with the fastest speed.

Model Serving. Model serving systems are of increasing
practical importance in the database community [2], [20]. Prior
systems, such as TUPAC [32], have shown that dense matrix
multiply is an effective approach for model/parameter search,
while other systems, such as Clipper [7], demonstrate that



adaptive batching can lead to performance wins in online
serving. In our work, we show that, for certain models,
blocked matrix multiply is actually faster than state-of-the-
art MIPS indexes, which prune significant computation but do
not take advantage of hardware efficiency. Thus, we introduce
a new MIPS index, MAXIMUS, that takes advantage of high-
performance BLAS libraries while also pruning computation.
Because the best serving strategy varies from model to model,
we introduce OPTIMUS, which determines the best serving
strategy using an online, sampling-based approach.

VII. CONCLUSION

MIPS is a critical component of many modern workloads,
including recommender systems and information extraction
tasks. In this work, we show that the fastest of today’s indexes
do not always outperform blocked matrix multiply. We thus
propose MAXIMUS, a simple but efficient indexing scheme
that leverages linear algebra kernels to gain hardware effi-
ciency while also pruning computation. In addition, we design
OPTIMUS, a system that can efficiently choose between using
an index and blocked matrix multiply. Together, OPTIMUS and
MAXIMUS achieve speedups of 3.2× on average, and up to
10.9×, on popular word embeddings and well-tuned models
from recommendation datasets.
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