
How Eventual is Eventual Consistency?

Peter Bailis, Shivaram Venkataraman, 
Michael J. Franklin, Joseph M. Hellerstein, Ion Stoica (UC Berkeley)

BashoChats 002, 28 February 2012

Probabilistically
Bounded
Staleness



what:
why:  
how:  

weak consistency is fast

consistency prediction

measure latencies
  use WARS model

PBS



1. Fast
2. Scalable
3. Available



solution: 
replicate for 
1. capacity 
2. fault-tolerance





keep replicas in sync



keep replicas in sync
slow



keep replicas in sync
slow

alternative: sync later



keep replicas in sync
slow

alternative: sync later
inconsistent



⇧consistency, ⇧latency
contact more replicas, 

read more recent data

    consistency,   
⇧ ⇧

latency
contact fewer replicas, 

read less recent data



Dynamo:
Amazon’s Highly Available Key-value Store

SOSP 2007

Project Voldemort

Apache, DataStax



N = 3 replicas

Coordinator

client

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)



N = 3 replicas

Coordinator

client

read(“key”)
read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)



N = 3 replicas

Coordinator

read(“key”)

client

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)



N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)(“key”, 1)

client

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)



N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)(“key”, 1)

client

(“key”, 1)
read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)



N = 3 replicas

Coordinator
read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

read(“key”)
read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

read(“key”)

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

(“key”, 1)

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)(“key”, 1)

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)(“key”, 1)

(“key”, 1)
read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator
read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

read(“key”)
read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

read(“key”)

send 
read 
to all

read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

(“key”, 1)

send 
read 
to all

read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

(“key”, 1)

(“key”, 1)

send 
read 
to all

read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)

(“key”, 1)

send 
read 
to all

read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)(“key”, 1)

(“key”, 1)

send 
read 
to all

read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client



N replicas/key
read: wait for R replies
write: wait for W acks



Coordinator W=1

R1(“key”, 1) R2 (“key”, 1) R3 (“key”, 1)



Coordinator

write(“key”, 2)

W=1

R1(“key”, 1) R2 (“key”, 1) R3 (“key”, 1)



Coordinator

write(“key”, 2)

W=1

R1(“key”, 1) R2 (“key”, 1) R3 (“key”, 1)



Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)



Coordinator

ack(“key”, 2)

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)



Coordinator Coordinator

read(“key”)ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

R=1



Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

read(“key”)

R=1



Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”, 1)

R=1



Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”,1)

R=1



Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”,1)

R=1



Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”,1)

R=1



Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”,1)

R=1



(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3 (“key”, 1)(“key”, 2)

(“key”,1)

ack(“key”, 2)

R=1



(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3(“key”, 2)

(“key”,1)

ack(“key”, 2) ack(“key”, 2)

(“key”, 2)

R=1



(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3(“key”, 2)

(“key”,1)

(“key”, 2)

R=1



(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3(“key”, 2)

(“key”,1)

(“key”, 2)

(“key”, 2)

R=1



(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3(“key”, 2)

(“key”,1)

(“key”, 2)

(“key”, 2) (“key”, 2)

R=1



(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3(“key”, 2)

(“key”,1)

(“key”, 2)

R=1



read (at least) last 
committed version

else:

W >⌈N/2⌉
R+W > Nif:

eventual
consistency

then:



eventual consistency
“If no new updates are 

made to the object, 
eventually all accesses 

will return the last 
updated value”

W. Vogels, CACM 2008



How
How long do I have to wait?

eventual?



consistent?
What happens if I don’t wait?

How



Riak Defaults
N=3
R=2
W=2



Riak Defaults
N=3
R=2
W=2

2+2 > 3



Riak Defaults
N=3
R=2
W=2

Phew, I’m safe!

2+2 > 3



Riak Defaults
N=3
R=2
W=2

Phew, I’m safe!

...but what’s my 
latency cost?2+2 > 3



Riak Defaults
N=3
R=2
W=2

Phew, I’m safe!

...but what’s my 
latency cost?

Should I change?
2+2 > 3



R+W



R+W

strong consistency



R+W

strong consistency
low latency



Cassandra:
R=W=1, N=3

by default
(1+1 ≯ 3)



http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/

"In the general case, we typically 
use [Cassandra’s] consistency level 
of [R=W=1], which provides 

maximum performance. Nice!"
	
 --D. Williams, 
	
 “HBase vs Cassandra: why we moved”
	
 February 2010

http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/
http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/


http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6

http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6
http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6


http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6

http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6
http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6


Consistency or Bust: Breaking a Riak Cluster

Low Value Data

n = 2, r = 1, w = 1

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster


Consistency or Bust: Breaking a Riak Cluster

Low Value Data

n = 2, r = 1, w = 1

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster


Consistency or Bust: Breaking a Riak Cluster

Mission Critical Data

n = 5, r = 1, w = 5, dw = 5

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster


Consistency or Bust: Breaking a Riak Cluster

Mission Critical Data

n = 5, r = 1, w = 5, dw = 5

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster


Voldemort @ LinkedIn

N=3 not required, “some consistency”:

R=W=1, N=2
@strlen, personal communication

“very low latency and high availability”:

R=W=1, N=3



Anecdotally, EC
“worthwhile” for 

many kinds of data



Anecdotally, EC
“worthwhile” for 

many kinds of data

How eventual?
How consistent?



Anecdotally, EC
“worthwhile” for 

many kinds of data

How eventual?
How consistent?

“eventual and consistent enough”



Can we do better?



Probabilistically 
Bounded Staleness

can’t make promises
can give expectations

Can we do better?



PBS is:
a way to quantify 
latency-consistency 
trade-offs

what’s the latency cost of consistency?
what’s the consistency cost of latency?



PBS is:
a way to quantify 
latency-consistency 
trade-offs

what’s the latency cost of consistency?
what’s the consistency cost of latency?

a SLA for consistency



t-visibility: consistent reads 
with probability p after 
after t seconds
(e.g., 99.9% of reads will be consistent after 10ms)

How eventual?



Coordinator Replicaonce per replica



Coordinator Replica
write

once per replica



Coordinator Replica
write

ack

once per replica



Coordinator Replica
write

ack
wait for W 
responses

once per replica



Coordinator Replica
write

ack
wait for W 
responses

t seconds elapse

once per replica



Coordinator Replica
write

ack

read

wait for W 
responses

t seconds elapse

once per replica



Coordinator Replica
write

ack

read

response

wait for W 
responses

t seconds elapse

once per replica



Coordinator Replica
write

ack

read

response

wait for W 
responses

t seconds elapse

wait for R 
responses

once per replica



Coordinator Replica
write

ack

read

response

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replica



Coordinator Replica
write

ack

read

response

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replica



Coordinator Replica
write

ack

read

response

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replica



Coordinator Replica
write

ack

read

response

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replica



N=2

T
I
M
E



write write

N=2

T
I
M
E



write

ack

write

ack

N=2

T
I
M
E



write

ack

write

ackW=1

N=2

T
I
M
E



write

ack

write

ackW=1

N=2

T
I
M
E



write

ack

read

write

ackW=1

N=2

read

T
I
M
E



write

ack

read

response

write

ackW=1

N=2

read

response

T
I
M
E



write

ack

read

response

write

ackW=1

R=1

N=2

read

response

T
I
M
E



write

ack

read

response

write

ackW=1

R=1

N=2

read

response

good

T
I
M
E



N=2

T
I
M
E



write
write

N=2

T
I
M
E



write

ack

write

ack
N=2

T
I
M
E



write

ack

write

ack

W=1

N=2

T
I
M
E



write

ack

write

ack

W=1

N=2

T
I
M
E



write

ack

read

write

ack

W=1

N=2

read

T
I
M
E



write

ack

read

response

write

ack

W=1

N=2

read

response

T
I
M
E



write

ack

read

response

write

ack

W=1

R=1

N=2

read

response

T
I
M
E



write

ack

read

response

write

ack

W=1

R=1

N=2

read

response

bad

T
I
M
E



write

ack

read

response

write

ack

W=1

R=1

N=2

read

response

bad

T
I
M
E



write

ack

read

response

write

ack

W=1

R=1

N=2

read

response

bad

T
I
M
E



write

ack

read

response

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replicaCoordinator Replica



Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2(“key”, 1) R3 (“key”, 1)(“key”, 2)

R=1



Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2(“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”, 1)

(“key”,1)

R=1



Coordinator Coordinator

write(“key”, 2)

ack(“key”, 2)

W=1

R1 R2(“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”, 1)

(“key”,1)

R=1

R3 replied before
last write arrived!



write

ack

read

response

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replicaCoordinator Replica



(W)
write

ack

read

response

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replicaCoordinator Replica



(W)
write

ack

read

response

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replica

(A)

Coordinator Replica



(R)

(W)
write

ack

read

response

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replica

(A)

Coordinator Replica



(R)

(W)
write

ack

read

response

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replica

(A)

(S)

Coordinator Replica



Solving WARS: hard
Monte Carlo methods: easy



To use WARS: 
gather latency data
run simulation

Cassandra implementation validated 
simulations; available on Github



t-visibility: consistent reads 
with probability p after 
after t seconds

How eventual?

key: WARS model
need: latencies



consistent?
What happens if I don’t wait?

How



Probability of reading later older than k 
versions is exponentially reduced by k

Pr(reading latest write) = 99%
Pr(reading one of last two writes) = 99.9%   

Pr(reading one of last three writes) = 99.99%



Riak Defaults
N=3
R=2
W=2

Phew, I’m safe!

...but what’s my 
latency cost?

Should I change?
2+2 > 3



Yammer
100K+ companies

uses Riak

LinkedIn 
150M+ users

built and uses Voldemort

production latencies
Thanks to @strlen and @coda:



N=3



10 ms

N=3



99.9% consistent reads:
R=2, W=1

t = 13.6 ms
Latency: 12.53 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 15.01 ms

LNKD-DISK

N=3



99.9% consistent reads:
R=2, W=1

t = 13.6 ms
Latency: 12.53 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 15.01 ms

LNKD-DISK

N=3

16.5% 
faster



99.9% consistent reads:
R=2, W=1

t = 13.6 ms
Latency: 12.53 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 15.01 ms

LNKD-DISK

N=3

16.5% 
faster
worthwhile?



N=3



N=3



N=3



99.9% consistent reads:
R=1, W=1

t = 1.85 ms
Latency: 1.32 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 4.20 ms

LNKD-SSD

N=3



99.9% consistent reads:
R=1, W=1

t = 1.85 ms
Latency: 1.32 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 4.20 ms

LNKD-SSD

N=3

59.5% 
faster



99.9% consistent reads:
R=1, W=1

t = 1.85 ms
Latency: 1.32 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 4.20 ms

LNKD-SSD

N=3

59.5% 
faster
better payoff!



Coordinator Replica

write

ack
(A)

(W)

response
(S)

(R)

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replica

critical factor 
in staleness

read



Latency

Pr
ob

ab
ili

ty
Probability Density Function

low variance



Latency

Pr
ob

ab
ili

ty
Probability Density Function

low variance
high variance



Coordinator Replica

write

ack
(A)

(W)

response
(S)

(R)

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replica

SSDs reduce
variance

compared to
disks!

read



99.9% consistent reads:
R=1, W=1

t = 202.0 ms
Latency: 43.3 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 230.06 ms

YMMR

N=3



99.9% consistent reads:
R=1, W=1

t = 202.0 ms
Latency: 43.3 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 230.06 ms

YMMR

N=3

81.1% 
faster



99.9% consistent reads:
R=1, W=1

t = 202.0 ms
Latency: 43.3 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 230.06 ms

YMMR

N=3

81.1% 
faster

even
better payoff!



Riak Defaults
N=3
R=2
W=2

Phew, I’m safe!

...but what’s my 
latency cost?

Should I change?
2+2 > 3



Is low latency worth it?



Is low latency worth it?

PBS can tell you.



Is low latency worth it?

PBS can tell you.
(and PBS is easy)





1. Metrics
2. Simulation
3. Set N, R, W
4. Profit

Workflow



what:
why:  
how:  

weak consistency is fast

consistency prediction

measure latencies
  use WARS model

PBS



R+W

strong consistency
low latency





latency vs. consistency trade-offs

fast and simple modeling

large benefits

be more

bailis.org/projects/pbs/#demo

@pbailis

PBS

http://bailis.org/projects/pbs
http://bailis.org/projects/pbs


github.com/pbailis/cassandra-pbs
cassandra patch

VLDB 2012 early print
tinyurl.com/pbspaper

http://bailis.org/projects/pbs
http://bailis.org/projects/pbs
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf


Extra Slides



PBS 
and 
apps



staleness requires 
either:

staleness-tolerant data structures
timelines, logs

cf. commutative data structures
    logical monotonicity

asynchronous compensation code
detect violations after data is returned; see paper

cf. “Building on Quicksand”
     memories, guesses, apologies

write code to fix any errors



minimize:
(compensation cost)×(# of expected anomalies)

asynchronous
compensation



Read only newer data?

client’s read rate
global write rate

(monotonic reads session guarantee)

# versions 
tolerable
staleness

=

(for a given key)



Failure?



 latency 
spikes

Treat failures as



How l o n g
do partitions last?



what time interval?
99.9% uptime/yr 
⇒ 8.76 hours downtime/yr

8.76 consecutive hours down
⇒ bad 8-hour rolling average



what time interval?
99.9% uptime/yr 
⇒ 8.76 hours downtime/yr

8.76 consecutive hours down
⇒ bad 8-hour rolling average

hide in tail of distribution OR
continuously evaluate SLA, adjust



Give me 
(and academia)
failure data!



In paper:
• Closed-form analysis

• Monotonic reads

• Staleness detection

• Varying N

• WAN model

• Production latency data

tinyurl.com/pbspaper

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf


t-visibility depends on:
	
 	
 1) message delays
	
 	
 2) background version 	
	
 	
     
	
 	
 	
  exchange (anti-entropy)



t-visibility depends on:
	
 	
 1) message delays
	
 	
 2) background version 	
	
 	
     
	
 	
 	
  exchange (anti-entropy)

anti-entropy:
only decreases staleness
comes in many flavors
hard to guarantee rate

Focus on message delays first



10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

R=3

LNKD-SSD LNKD-DISK YMMR WAN

LNKD-SSD LNKD-DISK YMMR WANLNKD-SSD LNKD-DISK YMMR WAN

LNKD-SSD LNKD-DISK YMMR WAN

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

C
D

F

W=1

10�2 10�1 100 101 102 103

Write Latency (ms)

0.2
0.4
0.6
0.8
1.0

W=2

(LNKD-SSD and LNKD-DISK identical for reads)N=3



10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

W=3

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

C
D

F

W=1

10�2 10�1 100 101 102 103

Write Latency (ms)

0.2
0.4
0.6
0.8
1.0

W=2

LNKD-SSD LNKD-DISK YMMR WAN

LNKD-SSD LNKD-DISK YMMR WANLNKD-SSD LNKD-DISK YMMR WAN

LNKD-SSD LNKD-DISK YMMR WAN

N=3



N=3



N=3



N=3



Synthetic,
Exponential Distributions



Synthetic,
Exponential Distributions

W 1/4x ARS



Synthetic,
Exponential Distributions

W 1/4x ARS

W 10x ARS



R1

N = 3 replicas

R2 R3

Write to W, read from R replicas



R1

N = 3 replicas

R2 R3

 R=W=3 replicas{ }}{ R1 R2 R3

 R=W=2 replicas{ }R1{ R2 } R2{ R3 } R1{ R3 }

Write to W, read from R replicas

quorum system:
guaranteed
intersection



R1

N = 3 replicas

R2 R3

 R=W=3 replicas

 R=W=1 replicas

{ }}{ R1 R2 R3

{ }R1 }{ R2 }{ R3 }{

 R=W=2 replicas{ }R1{ R2 } R2{ R3 } R1{ R3 }

Write to W, read from R replicas

quorum system:
guaranteed
intersection

partial quorum 
system:

may not intersect


