Probabilistically
Bounded

Staleness

How Eventual is Eventual Consistency?

Peter Bailis, Shivaram Venkataraman,
Michael). Franklin, Joseph M. Hellerstein, lon Stoica (UC Berkeley)

BashoChats 002, 28 February 2012

PBS

Wh at: consistency prediction

th weak consistency is fast

measure latencies

hOW: e WARS model

| . Fast
2. Scalable
3. Available

solution:
replicate for

|. capacity

2. fault-tolerance

keep replicas in sync

keep replicas in sync
slow

keep replicas in sync
slow

alternative: sync later

keep replicas in sync
slow

alternative: sync later

lInconsistent

{I consistency, 1 latency

contact more replicas,
read more recent data

J consistency, { latency

contact fewer replicas,
read less recent data

Dynamo:

Amazon’s Highly Available Key-value Store
SOSP 2007

Apache, DataStax

© Linked[}
basho /w
sriak €8 7T

Cassandra

Project Voldemort

N = 3 replicas

4) 4) 4)

RI(“key”, D |R2(“key”,)| |R3(“key”, 1)

_

4)

Coordinator

N=3 replicas

RI("key”,

|)

-

R2 (“key”, I)

_

-

Coordinator

~N

r

R3(‘key”, I)

J

A

read(“key”)

N=3 replicas

4 4 4

R (“key”, I) R2 (“key”, I) R3(‘key”, I)

i e

read(“key”)

N |/

4)

Coordinator

read \ /

N=3 replicas

r

RI(‘key”, l)

N\

(“ke)'”, I)

-

R2 (“key”, I)

(“ke)'”, I)

_

r

R3(‘key”, I)

/

(‘(key”’ I)

N

read

R=

3

Coordinator

N=3 replicas

4 4 4

R|(‘key”, I) R2 (“key”, I) R3(‘key”, I)

_

N\ | /

(“I(e)'”, I) (“I(e)'”, I) (“I(e)'”, I)

N

Coordinator

I‘eaCI S | g
(“I(e)'”, I)

N = 3 replicas

4) 4) 4)

RI(“key”, D |R2(“key”,)| |R3(“key”, 1)

_

4)

Coordinator

N=3 replicas

RI("key”,

4 4

I) R2 (“key”, I) R3(‘key”, I)

_

4)

Coordinator

_ J

A
read(“key”)

N=3 replicas

4 4 4

R (“key”, I) R2 (“key”, I) R3(‘key”, I)

i e

read(“key”)

N |/

4)

Coordinator

read \ /

N=3 replicas

4 4 4

R (“key”, I) R2 (“key”, I) R3(‘key”, I)

\. \.

N\

(“I(e)'”, I)

N

4)

Coordinator

read \ /

N=3 replicas

r

RI(‘key”, l)

((‘I(ey” I)

-

R2 (“key”, I)

_

r

R3(‘key”, I)

(‘(key” I)

NS

read

R=

3

Coordinator

N=3 replicas

r

RI(‘key”, l)

N\

(“ke)'”, I)

-

R2 (“key”, I)

(“ke)'”, I)

_

r

R3(‘key”, I)

/

(‘(key”’ I)

N

read

R=

3

Coordinator

N=3 replicas

4 4 4

R|(‘key”, I) R2 (“key”, I) R3(‘key”, I)

_

N\ | /

(“I(e)'”, I) (“I(e)'”, I) (“I(e)'”, I)

N

Coordinator

I‘eaCI S | g
(“I(e)'”, I)

N = 3 replicas

4) 4) 4)

RI(“key”, D |R2(“key”,)| |R3(“key”, 1)

_

4)

Coordinator

read \ /

N=3 replicas

RI("key”,

4 4

I) R2 (“key”, I) R3(‘key”, I)

_

4)

Coordinator

_ J

A
read(“key”)

N=3 replicas

4 4 4

R (“key”, I) R2 (“key”, I) R3(‘key”, I)

\. \.

\ read(“key”) /

N1 Z

Coordinator Sen d
read | :

N=3 replicas

r

.

RI("key”,

-

I) R2 (“key”, I)

_

N\

((‘I(ey”’

read

)

N

-

Coordinator

~N

r

R3(‘key”, I)

N=3 replicas

4 4 4

R|(‘key”, I) R2 (“key”, I) R3(‘key”, I)
AN

(“I(e)'”, I)

N

4)

Coordinator Send
I‘eaCI > | g
(e 1) read

to all

N=3 replicas

4 4 4

R|(‘key”, I) R2 (“key”, I) R3(‘key”, I)

_

((‘I(ey” I) (‘(key” I)

NS

Coordinator Sen d
I‘eaCI > | g ren d
(“key”, 1)

R=l

to all

N=3 replicas

4 4 4

R|(‘key”, I) R2 (“key”, I) R3(‘key”, I)

_

N\ | /

(“I(e)'”, I) (“I(e)'”, I) (“I(e)'”, I)

N

Coordinator Sén d
I‘eaCI > | g ren d
(“key”, 1)

R=l o b

to all

N replicas/key
read: wait for R replies
write: wait for W acks

r

RI (“key”, I)

.

-

_

R2 (“key”, I)

[Coordinator] wW=|

R3 (“key”,

|)

4)

RI (“key”, I)

\. J

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|

A
write(“key”, 2)
!

4)

R3 (“key”, I)

r

RI (“key”,

) 4

)

R2 (“key”,

4)

R3 (“key”, I)

S

wrlte(“key” 2)

[Coordlnator] wW=|

4)

RI (“key”, 2)

\. J

ack(“key”, 2)

|

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|

R3 (“ke)'”, I)

4)

RI (“key”, 2)

\. J

ack(“key”, 2)

|

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|
|

ack(“key”, 2)

R3 (“ke)'”, I)

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, I)

[Coordinator] R=|

A
read(“key”)

4)

RI (“key”, 2)

-

-

~N

R2 (“key”, 1)

\\

4)

R3 (“key”, I)

J

read (“key”)

[Coordmator] wW=|
|

ack(“key”, 2)

[Coordmator] R=|

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, I)

(“ke)'”, I)

[Coordinator] R=|

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, I)

[Coordinator] R=|

(“ke)'”, I)

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|

4)

R3 (“key”, I)

[Coordinator] R=|

(“ke)'”, I)

4)

RI (“key”, 2)

- J

-

_

\

R2 (“key”, 1)

[Coordinator] wW=|

4)

R3 (“key”, I)

[Coordinator] R=|

(“ke)'”, I)

4)

RI (“key”, 2)

- J

-

_

\

R2 (“key”, 1)

[Coordinator] wW=|

‘:,}
QT
\\\\:c,l/
N J

\

N

4)

R3 (“key”, I)

[Coordinator] R=|

4)

-

~N

RI (“key”, 2) R2 (“key”, 2)
ack(“key”, 2)

[Coordinator] wW=|

[
ack(“key”, 2)

R3 (“ke)'”, I)

[Coordinator] R=|

(“ke)'”, I)

4)

R I (“ke)'”, 2)

- J

-

_

~N

R2 (“key”, 2)

/

R3 (“ke)'”, 2)

/

ack(“key”, 2) ack(“key”,2)

[Coordinator] w=|
|

ack(“key”, 2)

[Coordinator] R=]

(“ke)'”, I)

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 2)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, 2)

[Coordinator] R=|

(“ke)'”, I)

4) 4) 4)

RI (“key”, 2) R2 (“key”, 2) R3 (“key”, 2)

- J -

~~

(“key”’ 2)

[Coordinator] w=| [Coordinator] R=|
|

ack(“key”, 2) (“key”, I)

4) 4) 4)

RI(“key”,2)| |R2(“key”,2)l |R3(“key”,?2)

- J -

NN

(“ke)'”, 2) (“key”’ 2)

- J

[Coordinator] w=| [Coordinator] R=|
|

ack(“key”, 2) (“key”, I)

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 2)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, 2)

[Coordinator] R=|

(“ke)'”, I)

.. W >[N/2]
|f R+W > N

read (at least) last

th e n : committed version

o €ventual
e I S e ® consistency

eventual consistency

“If no new updates are
made to the object,
eventually all accesses
will return the last
updated value™

W.Vogels, CACM 2008

How
eventual7

How long do | hav

How
consistent!

What happens if | don’t wait!?

Z
U

Riak Defaults

|
N

Riak Defaults

Riak Defaults

Phew, I'm safe!

Riak Defaults

Phew, I'm safe!
..but what’s my
2+2>3 latency cost?

N=3
R=2
W=2

Riak Defaults

Phew, I'm safe!
..but what’s my
2+2>3 latency cost?

Should | change!

N=3
R=2
W=2

AN . P—

strong consistency

e

strong consistency

low latency

Cassandra:
R=W=|, N=3
by default
(1+1 > 3)

"In the general case, we typically

use [Cassandra’s] consistency level
of [R=W=1], which provides

maximum performance. Nice!

--D.Williams,
“HBase vs Cassandra: why we moved”
February 2010

http://rial 01 .wordpress.com/2010/02/24/hbase-vs-cassan dra-why-we-move d/

http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/
http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/

0] -
o
0)
ﬁredd't PROGRAMMING H comments | related other discussions (1)

reddit's now running on Cassandra (biog.reddit.com)

submitted 1 year ago by ketralnis
261 comments share

sorted by: best v

you are viewing a single comment's thread.
view the rest of the comments —
[-] ketralnis [S] 13 points 1 year ago

We have a memcached (not memcachedb) in front of it which gives us the atomic
operations that we need, so it can take as long as it needs to replicate behind the scenes

If we didn't, we'd use CL-ONE reads/writes for most things except the operations that

needed to be atomic, where we'd do CL-QUORUM. But most of our data doesn't need
atomic reads/writes.

http://www.reddit.com/r/programming/comments/bcghi/reddits_now_running_on_cassandra/cOm3whé

http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6
http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6

0 .
o
0 .
gredd't PROGRAMMING | comments | related other discussions (1)

reddit's now running on Cassandra (biog.reddit.com)

submitted 1 year ago by ketralnis
261 comments share

sorted by: best w

you are viewing a single comment's thread.
view the rest of the comments —

[-] ketralnis [S] 13 points 1 year ago

We have a memcached (not memcachedb) in front of it which gives us the atomic
operations that we need, so it can take as long as it needs to replicate behind the scenes

If we didn't, we'd use CL-ONE reads/writes for most things except the operations that

needed to be atomic, where we'd do CL-QUORUM. But most of our data doesn't need
atomic reads/writes.

http://www.reddit.com/r/programming/comments/bcghi/reddits_now_running_on_cassandra/cOm3whé

http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6
http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6

Low Value Data

OREILLY*

COIl

open source convention

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

Low Value Data

OREILLY*

CQOrl

open source convention

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

ission Critical Data

LI mﬁrainlﬁj"._;imir

OREILLY*

COIl

open source convention

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

ission Critical Data

LI mﬁrainlﬁj"._;imir

OREILLY*

COIl

open source convention

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

Voldemort @ LinkedIn

“very low latency and high availability™:
R=W=|, N=3
N=3 not required, “some consistency’:

R=W=[, N=2

@strlen, personal communication

Anecdotally, EC

“worthwhile™ for
many kinds of data

Anecdotally, EC

“worthwhile™ for
many kinds of data

How eventual?
How consistent!?

Anecdotally, EC

“worthwhile™ for
many kinds of data

How eventual?
How consistent!?

“eventual and consistent enough”

Can we do better?

Can we do better?

Probabilistically
Bounded Staleness

can't make promises
can give expectations

PBS is:

a way to quantify
latency-consistency
trade-offs

what’s the latency cost of consistency?
what’s the consistency cost of latency!?

PBS is:

a way to quantify
latency-consistency
trade-offs

what’s the latency cost of consistency?
what’s the consistency cost of latency!?

a SLA for consistency

How eventual’

t-visibility: consistent reads

with probability p after
after t seconds

(e.g.,99.9% of reads will be consistent after 10ms)

Coordinator once per replica Replica

Coordinator once per replica Replica

write

\

Coordinator once perrepica Replica

write

\
—

ack

Coordinator once perrepica Replica

write

\

Coordinator once perrepica Replica

write

\

t seconds elapse

\

Coordinator once perrepica Replica

write

\

Coordinator once perrepica Replica

write

\

response

Coordinator once perrepica Replica

write

\

responses response

Coordinator once perrepica Replica

write

\

stale
: if read arrives
wait for R

before write
responses response

Coordinator once perrepica Replica

write

\

stale
: if read arrives
wait for R

before write
responses response

Coordinator once perrepica Replica

stale
- if read arrives

before write
responses response

Coordinator once perrepica Replica

stale
- if read arrives

before write
responses response

N

2

N

2

N

write

ack

write

ack

N=2

N=2

/esponse response

N

2

N

write

2

N=2

W ,
\ \\\\\

W ,
\ \\\\\

l |

S

ack

Coordinator once perrepica Replica

stale
- if read arrives

before write
responses response

4)

RI (“key”, 2)

- J

-

_

\

R2 (“key”, I)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, I)

[Coordinator] R=|

4)

R I (“ke)'”, 2)

-

-

_

~N

R2 (“key”, I)

[Coordinator] wW=|
|

ack(“key”, 2)

R3 (“key”, I)
(“key”, 1)

[Coordinator] R=|

[
(“ke)'”, I)
\

4)

RI (“key”, 2)

- J

R3 replied before
last write arrived!

-

_

~N

R2 (“key”, I)

write(“key”, 2)

\ 4
2
g

[Coorc;inator] wW=|
|

ack(“key”, 2)

R3 (“key”, I)
_ ‘T J

(“key”’ I)

[Coordinator] R=|

[
(“ke)'”, I)
\

Coordinator once perrepica Replica

stale
- if read arrives

before write
responses response

Coordinator once perrepica Replica

stale
- if read arrives

before write
responses response

Coordinator once perrepica Replica

(W) —,

(A)—
wait for W «—

ack
responses

t seconds elapse

) .@'
response Is
stale

wait for R / if read arrives

before write
responses response

Coordinator once perrepica Replica

(W) —,

(A)—
wait for W «—

ack
responses

t seconds elapse

T response is

(R) > stale

wait for R / if read arrives

before write
responses response

Coordinator once perrepica Replica

(W) —,

(A)—
wait for W «—

ack
responses

t seconds elapse

T response is

(R) > stale

/ . .
wait for R __——— (S) if read arrives

before write
responses response

Solving WARS: hard

Monte Carlo methods: easy

To use WARS:

gather latency data
run simulation

Cassandra implementation validated
simulations; available on Github

How eventual’

t-visibility: consistent reads

with probability p after
after t seconds

key: WARS model
need: latencies

How
consistent!

What happens if | don’t wait!?

Probability of reading later older than k
versions is exponentially reduced by k

Pr(reading latest write) = 99%
Pr(reading one of last two writes) = 99.9%
Pr(reading one of last three writes) = 99.99%

Riak Defaults

Phew, I'm safe!
..but what’s my
2+2>3 latency cost?

Should | change!

N=3
R=2
W=2

LinkedIn @8
| 50M+ users

built and uses Voldemort

Yammer
| 00K+ companies ys-

uses Riak

Thanks to @strlen and @coda:
production latencies

A— R=1 W=1

1.0

®— R=1W=2 B R=2 W=1

LNKD-I

0.9
0.8¢
0.7
0.6}
0.5¢
0.4

P(consistency)

y

4

Z

=3

t-visibility (ms)

A— R=1 W=1 ®— R=1W=2 B R=2 W=1

1.0

0.7

P(consistency)

0.4

=3

Z

LNKD-I

0.9¢

y

0.8¢

0.6}
0.5¢

t-visibility (ms)

N

3

LNKD-DISK

99.9% consistent reads:
R=2,W=]|

t=13.6 ms

Latency: 12.53 ms
100% consistent reads:
R=3,W=|
Latency: [5.0] ms

Latency is combined read and write latency at 99.9th percentile

16.5%
faster

N=3

LNKD-DISK

99.9% consistent reads:
R=2,W=|

t=13.6 ms

Latency: 12.53 ms
100% consistent reads:
R=3,W=|
Latency: [5.0] ms

Latency is combined read and write latency at 99.9th percentile

LNKD-DISK

99.9% consistent reads:
16.5% R=2,W=|

faster t=13.6 ms
Latency: 12.53 ms

| 00% consistent reads:
R=3,W=]|
N=3 Latency: [5.0] ms

worthwhile?

Latency is combined read and write latency at 99.9th percentile

A— R=1 W=1 ®— R=1W=2 B R=2 W=1

1.000 m--—ENE—[l-S-D -

.

P(consistency)

05 1.0 15 2.0
N=3 t-visibility (ms)

P(consistency)

R=1 W=1 ®— R=1W=2
1.000.7-.=--—-—H-§|l<—[l-8-[) —
0.995| ¥ dall
0.990|
0.985|
0.980!

0.975

B R=2 W=1

097035 10 15

=% t-visibility (ms)

P(consistency)

R=1 W=1 ®— R=1W=2 B R=2 W=1
1.000.7*-’-—-—H>-|l<—[l-8-[) -

09703570 15

=% t-visibility (ms)

N

3

LNKD-SSD

99.9% consistent reads:
R=|,W=]|

t = 1.85 ms

Latency: .32 ms
100% consistent reads:
R=3,W=|
Latency: 4.20 ms

Latency is combined read and write latency at 99.9th percentile

59.5%
faster

N=3

LNKD-SSD

99.9% consistent reads:
R=[|, W=|

t = 1.85 ms

Latency: .32 ms
100% consistent reads:
R=3,W=|
Latency: 4.20 ms

Latency is combined read and write latency at 99.9th percentile

LNKD-SSD

99.9% consistent reads:
59.5% R=1,W=|

faster t=1.85ms

Latency: .32 ms
100% consistent reads:
R=3,W=|

N=3 Latency: 4.20 ms

better payoff!

Latency is combined read and write latency at 99.9th percentile

Coordinator once per replica Replica

write

\@\critical factor

(A)/ in staleness
wait for W «—

ack
responses
....... e R LT L R EEP LR
t seconds elapse
\ read |
o response is

(R) I stale

/ . .
wait for R __—— (S) if read arrives

before write
responses response

Probability Density Function

—— |ow variance

Probability

Latency

Probability Density Function

— |low variance
— = high variance

Probability

Latency

Coordinator once per replica Replica

write

SSDs reduce
\@\ variance
___——compared to
wait for W = «— (A) disks!

ack
responses

——— (R) - resz:al?ze IS

/ . .
wait for R __——— (S) if read arrives

before write
responses response

N

3

YMMR

99.9% consistent reads:
R=1,W=]|

t = 202.0 ms

Latency: 43.3 ms
100% consistent reads:
R=3,W=|
Latency: 230.06 ms

Latency is combined read and write latency at 99.9th percentile

YMMR

99.9% consistent reads:
81.1% R=1,W=|

facter t=202.0 ms

Latency: 43.3 ms
100% consistent reads:
R=3,W=]|

N=3 Latency: 230.06 ms

Latency is combined read and write latency at 99.9th percentile

YMMR

8 I I % 99.9% consistent reads:

R=1,W=]|
faster t=202.0 ms
even Latency: 43.3 ms
better payoff’ 1 00% consistent reads:
R=3,W=]|

L : 230.
N=3 atency: 230.06 ms

Latency is combined read and write latency at 99.9th percentile

Riak Defaults

Phew, I'm safe!
..but what’s my
2+2>3 latency cost?

Should | change!

N=3
R=2
W=2

Is low latency worth it?

Is low latency worth it?

PBS can tell you.

Is low latency worth it?

PBS can tell you.

(and PBS is easy)

PBS: Probablhstlca”y Bounded Staleness About Instructions Demo Questions Moreinfo Thanks

How Eventual is Eventual Consistency?

P(Consistency)
0.950
0.900
0.850
0.800
=0, Pr=0.755
o
0.0 5.0 10.0 15.0 20.0 25.0
Time After Commit (ms)
(Plot isn't monotonically increasing? Increase the accuracy.)
You have at least a 74.8 percent chance of reading the last written version 0 ms after it commits.
You have at least a 92.2 percent chance of reading the last written version 10 ms after it commits.
You have at least a 99.96 percent chance of reading the last written version 100 ms after it commits.
Replica Configuration Tolerable Staleness: 1 version
N: @ 3 Read Latency: Median 8.43 ms, 99.9th %ile 36.97 ms O
R: OJ Write Latency: Median 8.38 ms, 99.9th %ile 38.28 ms Accuracy: 2500 iterations/point
w: 0O @
Operation Latency: Exponentially Distributed CDFs
W: Write Request to Replica A: Replica Write Ack R: Read Request to Replica S: Replica Read Response
0.80 0.80 0.80 0.80
0.60 0.60 0.60 0.60
0.40 0.40 0.40 0.40
0.20 0.20 0.20 020
0.00 0.00 0.00 0.00
0 S5 10 15 20 25 30 0 S5 10 15 20 25 30 0 S5 10 15 20 25 30 0 S5 10 15 20 25 30

Latency (ms) Latency (ms) Latency (ms) Latency (ms)
A @D 0.100 A D 0.100 A D 0.100 A @D 0.100

Workflow

|. Metrics

2. Simulation

3.Set N,R, W
4. Profit

PBS

Wh at: consistency prediction

th weak consistency is fast

measure latencies

hOW: e WARS model

e

strong consistency

low latency

> — g "
e .Q\.v.'.ef.\ . i

o~
é s

1

latency vs. consistency trade-offs

fast and simple modeling

PBS

bailis.org/projects/pbs/#demo

@pbailis

large benefits

be more

http://bailis.org/projects/pbs
http://bailis.org/projects/pbs

VLDB 2012 early print
tinyurl.com/pbspaper

cassandra patch
github.com/pbailis/cassandra-pbs

http://bailis.org/projects/pbs
http://bailis.org/projects/pbs
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf

Extra Slides

staleness requires
either:

staleness-tolerant data structures

timelines, logs
cf. commutative data structures
logical monotonicity

asynchronous compensation code

detect violations after data is returned; see paper
write code to fix any errors

cf.“Building on Quicksand”
memories, guesses, apologies

asynchronous
compensation

minimize:

(compensation cost)x(# of expected anomalies)

Read only newer data’
(monotonic reads session guarantee)

versions client’s read rate
tolerable = ——————
staleness global write rate

(for a given key)

Treat failures as
latency

Spl kes

How | o n g
do partitions last!

what time interval?

99.9% uptimelyr
= 8.76 hours downtime/yr

8.76 consecutive hours down
= bad 8-hour rolling average

what time interval?

99.9% uptimelyr
= 8.76 hours downtime/yr

8.76 consecutive hours down
= bad 8-hour rolling average

hide in tail of distribution OR
continuously evaluate SLA, adjust

Give me

(and academia)
failure data!

In paper:
® Closed-form analysis
® Monotonic reads
® Staleness detection
® Varying N
¢ VWAN model

® Production latency data

tinyurl.com/pbspaper

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf

t-visibility depends on:
|) message delays

2) background version
exchange (anti-entropy)

t-visibility depends on:

|) message delays

anti-entropy:
only decreases staleness

comes in many flavors
hard to guarantee rate

Focus on message delays first

—&— LNKD-SSD 4 YMMR
—&— LNKD-DISK —%¥— WAN

1.0

0.8} R=3

LL i
a 0.6

O 0.4
0.2}

10-2 10" 10° 10" 102
Write Latency (ms)

N=3 (LNKD-SSD and LNKD-DISK identical for reads)

103

—@— LNKD-DISK
1.0 ———
0.8 W=3
L i
L 0.6
O 0.4}
0.2
102 10-1 100

—&— LNKD-SSD 4 YMMR
—v— WAN

0
Write Latency (ms)

102

N

P(consistency)

3

R=1 W=1

®— R=1W=2

0.98
0.96]
0.94;
0.92
0.90{
0.88

YMMR

B R=2 W=1

T T

t-visibility (ms)

103

N

P(consistency)

3

R=1 W=1

®— R=1W=2

0.98
0.96]
0.94;
0.92
0.90{
0.88

YMMR

B R=2 W=1

t-visibility (ms)

10°

P(consistency)

N=3

0.98
0.96]
0.94;
0.92

0.88

t-visibility (ms)

10°

P(consistency)

O
~

O
o)

O
o

-
1SN

Synthetic,

Exponential Distributions

4F

. ®

ARS)\:W

t-visibility (ms)

O 14 e— 1:0.50
—t— 1:2 B— 1:0.20 .
A— 1:1 e— 1:0.10
0 > 4 5 8 10

W |/4x ARS Synthetic,
\ Exponential Distributions

P(consistency)
o o o o ©
ol (@) ~ 00 (@

O
I

-R}

ARSA:W)
O 14 e— 1:0.50
—%— 1:2 m— 1:0.20
A— 1:1 e— 1:0.10

> 4 6 8
t-visibility (ms)

10

W |/4x ARS Synthetic,
\ Exponential Distributions
1.0 —— . —————————
>_

P(consistency)
o o o o ©
ol (@) ~ 00 (@

O
I

;

W |0x ARS

ARS)\:W

O 14 e— 1:0.50
—tf— 1:2 m— 1:0.20 _
A— 1:1 e— 1:0.10
> 4 5 8 10

t-visibility (ms)

N = 3 replicas

RI

J

-

_

R2

~N

J

.

R3

Write to VW, read from R replicas

N = 3 replicas

RI R?2 R3

Write to VW, read from R replicas

quorum system:

.i‘éZiiZZf.ii {{[R 1J(R2](R3] }} R=W=3 replicas I
MR} rewez i

N = 3 replicas

RI R2 R3

Write to VW, read from R replicas

quorum system:

.i‘éiii‘;‘if.ii {{[R 1J(R2](R3] }} R=W=3 replicas I
MR} rewez i

“partial quorum

A ()Y ()) -

may not intersect

